Site Loader

Содержание

Чем отличается коллекторный и бесколлекторный двигатель?

Задача электрического двигателя создать вращение, что приводит в движение радиоуправляемые модели.Часто одни и те же радиоуправляемые модели — автомодели, авиамодели, судомодели — сильно отличаются друг от друга по цене — почти в 2 раза. Эти модели могут быть укомплектованы коллекторными и бесколлекторными двигателями и соответственными регуляторами. Нужно понять, какой двигатель выбрать.

Существует 2 основных типа электродвигателей, использующихся в радиоуправляемых моделях: коллекторные и бесколлекторные.

Коллекторные двигатели (brushed, щеточные) дешеле, но модели с такими двигателями развивают меньшую скорость и такие моторы менее надежны.

Определяющей особенностей коллекторных двигателей является наличие щеточно-коллекторного узла, который обеспечивает движение радиоуправляемой модели. Главным внешним отличием коллекторного двигателя от бесколлекторного является наличие у него двух проводов вместо трех. Коллекторный двигатель состоит из подвижной части — ротор и неподвижной — статор (корпус). Коллектор — набор контактов, расположены на роторе и щётки — скользящие контакты, расположены вне ротора и прижаты к коллектору. Ротор с обмотками вращается внутри статора. Щётки используются, чтобы передавать электрическую энергию на катушки вращающихся обмоток ротора. Обычные коллекторные электродвигатели, имеют всего два провода (положительный и отрицательный), которыми двигатель подключается к регулятору скорости.


Коллекторные двигатели, используемые в радиоуправляемых моделях, работают от постоянного тока. К примеру, подав на два провода двигателя соответствующее напряжение от источника постоянного тока, например, обычной батарейки или аккумулятора, приводим вал двигателя в движение. Схема регулятора для коллекторного двигателя простая, что так же уменьшает стоимость такой комплектации. Ротор двигателя разгоняет магнитное поле, создаваемое на обмотках. Величина этого поля зависит от напряжения приложенного к обмоткам, чем большее магнитное поле будет создано, тем быстрее будет крутиться ротор. На двигателе обычно указывается число оборотов обмотки двигателя, чем меньше число, тем выше скорость вращения вала двигателя.
Среди преимуществ коллекторных двигателей радиоуправляемых моделей можно выделить: малые размеры, вес, а также относительно низкая стоимость. Поэтому такой тип двигателя наиболее часто применяется в бюджетных комплектациях моделей или в моделях начального уровня. Если говорить о надежности коллекторного двигателя, то он сильно уступает бесколлекторному. При всей их простоте, у них один огромный недостаток — ограниченный ресурс. Наличие щеточно-коллекторного узла подразумевает механическую систему подвижных контактов, то есть механическая работа щеточек и коллектора может привести к искрению при перегреве и быстрый износ при неблагоприятных условиях эксплуатации (влага, грязь, пыль). В процессе работы коллекторных двигателей происходит постепенный износ графитовых щеток и металла коллектора, по которым щетки скользят и рано или поздно они выходят из строя. Перед началом эксплуатации модели, двигатель желательно обкатать при пониженной нагрузке для того, чтобы щетки правильно притерлись к коллектору. При агрессивной (может быть 2 заезда) или длительной эксплуатации модели замена коллекторного моторчика – это частое и обыденное явление.

Бесколлекторные двигатели (brushless, бесщёточные) – дороже, но способны развить большую скорость, а также более износостойкие. Модель, оборудованная современной бесколлекторной системой, ездит и быстрее, и дольше.

Высокая эффективность (коэффициент полезного действия) и износостойкость достигается благодаря отсутствию щеточно-коллекторного узла. Бесколлекторные моторы являются более мощными, чем коллекторные моторы того же размера. Главным внешним отличием бесколлекторного мотора от коллекторного является наличие у него трёх проводов вместо двух. У бесколлекторного двигателя подвижной частью является как раз статор (корпус) с постоянными магнитами, а неподвижной частью — ротор с трехфазной обмоткой. Переключение обмоток происходит за счет относительно сложной электронной схемы — регулятора.

Бесколлекторный двигатель приводится во вращение трёхфазным переменным током, поэтому для их работы необходим специальный контроллер скорости (регулятор), преобразующий постоянный ток от аккумулятора в переменный. Как бесколлекторный двигатель, так и регулятор для бесколлекторного двигателя имеет более сложную конструкцию, в силу чего, стоимость возрастает.

Двигатели, используемые в моделях, имеют закрытый корпус, что делает их устойчивыми к влаге, пыли, грязи. Можно сказать, что бесколлекторные моторы практически не изнашиваются. Изнашиваться могут только подшипники. Единственная возможность разбить мотор — в столкновении. Еще можно сжечь контроллер — как и любой регулятор, но при наличии в контроллере защиты по току он тоже прослужит долго.

Значения характеристик двигателя для радиоуправляемых моделей
.


Помимо деления на коллекторные и бесколлекторные, двигатели делятся по следующим значимым характеристикам: мощности, КV, напряжению, максимальному току.

По размерам. Для коллекторного двигателя — эта характеристика называется класс, где цифрой, к примеру, 280, 300,400, 480, 500, 600, 650, 700, 720, 820, 900, обозначается длина корпуса двигателя. Существует набор классов.
Пример: класс двигателя определяется его длиной — если мы говорим о двигателе 400-го класса, то речь идет о моторе с длиной корпуса 400мм. У Бесколлектоных двигателей важной характеристикой яляется его размер — длина и ширина. Различия в размерах дает представление о мощности бесколлекторного электромотора. Чем больше размер — тем выше мощность.

Пример: Двигатель 4274 означает:
диаметр — 42 мм,
длина — 74 мм.

Например, двигатель с такими размерами один из самых мощных, он подойдет на автомодель масштаба 1:8.

Мощность двигателя (power, watt) — определяет работу, которую двигатель может выполнить в единицу времени. Самая важная характеристика мотора. Зная мощность, можно определить максимальную нагрузку которую может выдержать двигатель по формуле.
Мощность (Ватт) = Напряжение питания (Вольт) * Сила тока (Ампер).
Зная мощность можно подобрать аккумулятор и регулятор по максимальной силе тока, получаемой из формулы.

Обороты

, об/В (KV, RPM) — обороты на вольт.
Важный параметр указывает скорость вращения вала двигателя. Обороты в минуту определяются количеством вращений в минуту, проще говоря как быстро вращается мотор. Скорость вращения ротора, измеряется в KV. Так принято обозначать коэффициент отношения частоты вращения оборотов мотора (об/мин) к напряжению питания мотора (В). Грубо говоря kV показывает насколько быстро будут вращаться разные моторы при одинаковом напряжении.
Максимальные обороты = KV * Напряжение питания двигателя.
Например: мотор мощностью 980 KV, на который подаются 11.1V от батарейки будет вращаться при 980 x 11.1 = 10878 оборотах в минуту без нагрузки.

Показания тока могут представлять максимальный непрерывный ток и предельные значения тока, который может подаваться на двигатель. Выбирая аккумулятор и регулятор, выбирайте те, на которых указаны значения максимального непрерывного тока равного и больше, чем значения тока на моторе.
Для разных моделей, разных используемых шестеренок и пропеллеров требуемый kV мотора подбирается и вычисляется индивидуально. По этому параметру можно подобрать применение мотора, аккумулятор и пропеллер. Так моторы с KV больше 2000, как правило, применяют на вертолетах либо на скоростных моделях. Мотор с высоким KV можно использовать с батарей из меньшего количества банок и он более эффективен с пропеллером с меньшим шагом. Моторы этого класса чаще используют на летающих крыльях. Моторы с меньшим KV позволяют ставить аккумуляторы с большим количеством банок, таким образом несколько набирая вес, но увеличивая продолжительность полета — не за счет емкости, а за счет снижения максимальных токов при той же работе выполняемой мотором. Чем выше KV моторов, тем компактнее должны быть винты. Винты небольшого размера обеспечивают более высокую скорость, но снижают эффективность. Конфигурацию с винтами большого размера и, соответственно, моторы с более низким значением KV проще заставить стабильно летать, она расходует меньше энергии, позволяет поднять большую массу.
KV — значимая характеристика для бесколлекторных моторов. У коллекторных моторов обычно на KV не смотрят. Если моделист принял решение заменить коллекторный мотор, то обычно меняет на точно такой же.

Напряжение питания, В (cell count, volts)
Напряжение, к которому приспособлен двигатель. Определяет количество банок аккумулятора, которое можно использовать с мотоустановкой. При превышении резко уменьшается время жизни мотора.
Например, имеются моторы с рабочим напряжением 4,8 вольта, 6 вольт, и 7,2 вольта. Эти цифры указывают, с каким количеством банок в батарее предназначен работать этот двигатель. Напряжение на одной банке NiMH (никель-металгидридном) аккумулятора составляет 1,2 вольта — мотор с рабочим напряжением 4,8 вольт предназначен для работы от 4-х баночного аккумулятора. Эти цифры ориентировочные, моторы способны работать и при повышенных напряжениях.

Напряжение и KV связаны.

Максимальная нагрузка, А (max load, peak current, max amps, surge current)
Сила тока, которую способен без повреждения выдержать двигатель и регулятор. Максимальный ток тем больше,чем больше физические размеры бесколлекторного двигателя.

Рабочая нагрузка, А (current load, continuous current)
Количество ампер длительно и без перегрузки пропускаемое мотором при номинальном напряжении. Позволяет посчитать, сколько времени прослужит аккумулятор с этим мотором.

Максимальная эффективность, % (max efficiency)
КПД — то количество энергии, которое мотор переводит непосредственно в полезную работу. Чем выше — тем лучше.

По конструкции бесколлекторные моторы делятся на две группы: inrunner и outrunner. Эта характеристика говорит о конструктивной особенности мотора.
Двигатели Inrunner имеют расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор. Большенству радиоуправляемых моделей — машин и лодок требуются бесколлекторный мотор Inrunner.
Двигатели Outrunner имеют неподвижные обмотки, внутри двигателя, вокруг которых вращается корпус с помещенными на его внутреннюю стенку постоянными магнитами, т. е. в аутраннерах вращается внешняя часть мотора. Аутранеры выбирают для авиамоделей, т. к. они в силу своей конструкции лучше охлаждаются и у них больше вариаций, как их можно прикрепить. Моторы Outrunner имеют меньшие значения в Киловольтах, что означает, что они движутся с меньшей скоростью, но с большим крутящим (вращающим) моментом. Обычно мощность Аутранеров не определяют по внешним габаритам. Аутраннеры благодаря своей конструкции позволяют использовать большее число магнитных полюсов.

Количество полюсов магнитов, используемых в бесколлекторных двигателях, может быть разным.
По количеству полюсов можно судить о крутящем моменте и оборотах и двигателя. Моторы с двухполюсными роторами имеют наибольшую скорость вращения при наименьшем крутящем моменте. Моторы с большим количеством полюсов имеют меньшую скорость вращения, но зато больший крутящий момент.

Также бесколлекторные двигатели бывают сенсорные и бессенсорные.
Сенсорные лучше, так как сенсор обеспечивает более плавную работу двигателя, быстрый и плавный старт, более рациональное использование энергии.

Трёхфазный бесколлекторный двигатель


1. Двигатель стиральной машины с прямым приводом

Пожалуй уже каждый слышал о стиральных машинах с прямым приводом барабана. Но до сих пор, даже не все специалисты по ремонту стиральных машин знают как устроен и как работает двигатель в такой машине.

Сама идея конечно не новая, ведь за основу взят шаговый двигатель, который уже давно получил распространение во многих электротехнических устройствах. А вот первое применение его в конструкции стиральной машины в качестве привода барабана, принадлежит корейскому концерну LG. С середины 2005 года, компания LG начала активно продвигать свою продукцию, заявляя о 10-ти летней гарантии на двигатель для стиральных машин с прямым приводом.

Сегодня, помимо LG, компании Samsung, Haier и Whirpool в ряде моделей стиральных машин стали применять подобные двигатели. Забегая вперёд, можно сказать, что компания LG не просчиталась и двигатель для прямого привода барабана действительно довольно надёжный и имеет преимущество по сравнению с более традиционным и распространённым коллекторным двигателем.

2. Устройство двигателя

Двигатель стиральной машины с прямым приводом, представляет собой трёхфазный бесколлекторный двигатель постоянного тока, отчасти похожий на шаговый двигатель, но это не совсем так. В иностранной литературе его ещё часто называют BLDC (Brushless Direct Current Motor — бесщёточный мотор постоянного тока), для удобства мы тоже будем применять эту аббревиатуру.

Такой двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Различают два вида подобных двигателей:

Inrunner, у которых магниты ротора находятся внутри статора с обмотками, и Outrunner, у которых магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками. В стиральных машинах с прямым приводом применяется Outrunner тип двигателя.

В этой статье мы ознакомим с устройством двигателя от стиральной машины LG.

3. Ротор

Ротор двигателя стиральной машины LG с прямым приводом
Рис.2 Ротор двигателя стиральной машины LG с прямым приводом

Ротор BLDC — вращающаяся часть двигателя (Рис.2) По форме напоминает чашу, к внутренней стороне которой специальным клеем крепятся магниты прямоугольной формы. Магниты всегда имеют чётное количество и установлены с чередованием полюсов. В нашем случае установлено 12 магнитов, размер которых зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. В центре ротора есть специальное посадочное отверстие с насечками, что позволяет, при помощи болта или гайки, закрепить ротор напрямую к валу барабана. С внешней стороны ротора, продавлено 10 щелей образующих на обратной его стороне небольшие лопасти для охлаждения обмоток статора.

4. Статор

Статор двигателя стиральной машины LG с прямым приводом
Рис.3 Статор двигателя стиральной машины LG с прямым приводом

Статор BLDC — неподвижная часть двигателя и крепится к задней части бака стиральной машины (Рис.3) Статор состоит из нескольких листов магнитопроводящей стали заключённый в пластиковый каркас, который служит изолятором. В целом, каркас статора напоминает круг с прямоугольными зубьями. На каждый зуб статора наматывается катушка.

Обмотка трёхфазного бесколлекторного двигателя изготовлена из медной проволоки толщиной 1 мм. Классическая обмотка выполняется одним проводом для одной фазы, то есть все обмотки на зубьях одной фазы соединены последовательно. В данном случае статор имеет 36 зубьев — это значит по 12 зубьев на одну фазу. Сопротивление обмотки каждой фазы порядка 10 Ом.
Как известно, в трёхфазных двигателях, обмотки соединяют по схеме звезда или треугольник.
В нашем случае, обмотки статора соединены по схеме звезда, т.е. концы фаз имеют общую точку (Рис.4)

Поскольку в каждый момент времени работают только две фазы (при включении звездой), магнитные силы воздействуют на ротор неравномерно по всей окружности (Рис.5).

Силы, воздействующие на ротор, стараются его перекосить, что приводит к увеличению вибраций. Для устранения этого эффекта статор делают с большим количеством зубьев, а обмотку распределяют по зубьям всей окружности статора как можно равномернее (Рис.6)

Статор двигателя стиральной машины LG с прямым приводом

Рис.4 Соединение обмоток по схеме «звезда»

Статор двигателя стиральной машины LG с прямым приводом

Рис.5 Воздействие магнитных сил на ротор

Статор двигателя стиральной машины LG с прямым приводом

Рис.6 Распределение магнитных сил в обмотке с несколькими зубьями

В двигателе стиральной машины LG, распределение фазных обмоток, а также относительное положение ротора и статора можно увидеть ниже (см. Рис.7). На схеме производителя, фазные обмотки обозначают буквами : V, W, U

внутреннее соединение обмоток BLDC двигателя

Рис.7 Трёхфазный двигатель постоянного тока (BLDC) стиральной машины LG (общий вид)

Для контроля положения ротора применяется датчик работающий на эффекте Холла. Датчик реагирует на магнитное поле и поэтому его располагают на статоре таким образом, чтобы магниты ротора воздействовали на него.

5. Система управления трёхфазным двигателем (BLDC)

Стоит отметить, что система управления двигателем BLDC и схема её реализации аналогична схеме управления трёхфазным асинхронным двигателем описанной в другой нашей статье. Что бы в точности не повторяться, поясним всё же немного по другому.

Управление двигателем с прямым приводом построено на инверторе напряжения с широтно-импульсной модуляцией. Инвертор — (от лат. inverto — поворачивать, переворачивать) — элемент вычислительной схемы, осуществляющий определённые преобразования сигнала изменяемой амплитуды и частоты. К примеру, в инверторе, сетевое напряжение 220 вольт с частотой 50 Гц, преобразуется в постоянное напряжение, а параметры питания обмоток статора двигателя могут колебаться от 0 до 120 вольт с частотой до 300 Гц.

Двигатель постоянного тока имеет три вывода (т.е. три фазы), на которые в разный момент времени подаётся «+» и «-» питания. Это реализуется при помощи IGBT (биполярных транзисторов с изолированным затвором) представляющие электронные силовые ключи, включённые по мостовой схеме (Рис.8)

условная схема инвертора двигателя
Рис.8 Условная схема силовой части инвертора и обмоток двигателя подключённых по схеме «звезда»

Замыкая ключ SW1 подаётся «+» на фазу V, а замыкая SW6 подаётся «-» на фазу U. Таким образом, ток потечет от «+» выпрямителя через фазы V и U. Для обеспечения обратного направления, открывается SW5 и SW2. В этом случае ток потечет от «+» выпрямителя через фазы U и V в обратном направлении. При работе двигателя одновременно должен быть открыт только один верхний и один нижний ключ.

При включении ключей, как показан

Создание и тестирование бесколлекторного мотора / Хабр

В этой статье мы хотели бы рассказать о том, как мы с нуля создали электрический мотор: от появления идеи и первого прототипа до полноценного мотора, прошедшего все испытания. Если данная статья покажется вам интересной, мы отдельно, более подробно, расскажем о наиболее заинтересовавших вас этапах нашей работы.


На картинке слева направо: ротор, статор, частичная сборка мотора, мотор в сборе

Вступление


Электрические моторы появились более 150 лет назад, однако за это время их конструкция не претерпела особых изменений: вращающийся ротор, медные обмотки статора, подшипники. С годами происходило лишь снижение веса электромоторов, увеличение КПД, а также точности управления скоростью.

Сегодня, благодаря развитию современной электроники и появлению мощных магнитов на основе редкоземельных металлов, удаётся создавать как никогда мощные и в то же время компактные и легкие “Бесколлекторные” электромоторы. При этом, благодаря простоте своей конструкции они являются наиболее надежными среди когда-либо созданных электродвигателей. Про создание такого мотора и пойдет речь в данной статье.

Описание мотора


В “Бесколлекторных моторах” отсутствует знакомый всем по разборке электроинструмента элемент “Щетки”, роль которых заключается в передаче тока на обмотку вращающегося ротора. В бесколлекторных двигателях ток подается на обмотки не-двигающегося статора, который, создавая магнитное поле поочередно на отдельных своих полюсах, раскручивает ротор, на котором закреплены магниты.

Первый такой мотор был напечатан нами 3D принтере как эксперимент. Вместо специальных пластин из электротехнической стали, для корпуса ротора и сердечника статора, на который наматывалась медная катушка, мы использовали обычный пластик. На роторе были закреплены неодимовые магниты прямоугольного сечения. Естественно такой мотор был не способен выдать максимальную мощность. Однако этого хватило, что бы мотор раскрутился до 20к rpm, после чего пластик не выдержал и ротор мотора разорвало, а магниты раскидало вокруг. Данный эксперимент сподвиг нас на создание полноценного мотора.

Несколько первых прототипов





Узнав мнение любителей радиоуправляемых моделей, в качестве задачи, мы выбрали мотор для гоночных машинок типоразмера “540”, как наиболее востребованного. Данный мотор имеет габариты 54мм в длину и 36мм в диаметре.

Ротор нового мотора мы сделали из единого неодимового магнита в форме цилиндра. Магнит эпоксидкой приклеили на вал выточенный из инструментальной стали на опытном производстве.

Статор мы вырезали лазером из набора пластин трансформаторной стали толщиной 0.5мм. Каждая пластина затем была тщательно покрыта лаком и затем из примерно 50 пластин склеивался готовый статор. Лаком пластины покрывались чтобы избежать замыкания между ними и исключить потери энергии на токах Фуко, которые могли бы возникнуть в статоре.

Корпус мотора был выполнен из двух алюминиевых частей в форме контейнера. Статор плотно входит в алюминиевый корпус и хорошо прилегает к стенкам. Такая конструкция обеспечивает хорошее охлаждение мотора.

Измерение характеристик


Для достижения максимальных характеристик своих разработок, необходимо проводить адекватную оценку и точное измерение характеристик. Для этого нами был спроектирован и собран специальный диностенд.

Основным элементом стенда является тяжёлый груз в виде шайбы. Во время измерений, мотор раскручивает данный груз и по угловой скорости и ускорению рассчитываются выходная мощность и момент мотора.

Для измерения скорости вращения груза используется пара магнитов на валу и магнитный цифровой датчик A3144 на основе эффекта холла. Конечно, можно было бы измерять обороты по импульсам непосредственно с обмоток мотора, поскольку данный мотор является синхронным. Однако вариант с датчиком является более надёжным и он будет работать даже на очень малых оборотах, на которых импульсы будут нечитаемы.

Кроме оборотов наш стенд способен измерять ещё несколько важных параметров:

  • ток питания (до 30А) с помощью датчика тока на основе эффекта холла ACS712;
  • напряжение питания. Измеряется непосредственно через АЦП микроконтроллера, через делитель напряжения;
  • температуру внутри/снаружи мотора. Температура измеряется посредством полупроводникового термосопротивления;

Для сбора всех параметров с датчиков и передачи их на компьютер используется микроконтроллер серии AVR mega на плате Arduino nano. Общение микроконтроллера с компьютером осуществляется посредством COM порта. Для обработки показаний была написана специальная программа записывающая, усредняющая и демонстрирующая результаты измерений.

В результате наш стенд способен измерять в произвольный момент времени следующие характеристики мотора:

  • потребляемый ток;
  • потребляемое напряжение;
  • потребляемая мощность;
  • выходная мощность;
  • обороты вала;
  • момент на валу;
  • КПД;
  • мощность уходящая в тепло;
  • температура внутри мотора.

Видео демонстрирующее работу стенда:

Результаты тестирования


Для проверки работоспособности стенда мы сначала испытали его на обычном коллекторном моторе R540-6022. Параметров для этого мотора известно достаточно мало, однако этого хватило, чтобы оценить результаты измерения, которые получились достаточно близкими к заводским.

Затем уже был испытан наш мотор. Естественно он смог показать лучшее КПД(65% против 45%) и при этом больший момент(1200 против 250 г на см), чем обычный мотор. Измерение температуры тоже дало достаточно хорошие результаты, во время тестирования мотор не нагревался выше 80 градусов.

Но на данный момент измерения пока не окончательны. Нам не удалось измерить мотор в полном диапазоне оборотов из-за ограничения мощности источника питания. Также предстоит сравнить наш мотор с аналогичными моторами конкурентов и испытать его “в бою”, поставив на гоночную радиоуправляемую машину и выступить на соревнованиях.

Бесколлекторные двигатели постоянного тока. Что это такое? — Avislab

Этой статьёй я начинаю цикл публикаций о бесколлекторных двигателях постоянного тока. Доступным языком  опишу общие сведения, устройство, алгоритмы управления бесколлекторным двигателем. Будут рассмотрены разные типы двигателей, приведены примеры подбора параметров регуляторов. Опишу устройство и алгоритм работы регулятора,  методику выбора силовых ключей и основных параметров регулятора. Логическим завершением публикаций будет схема регулятора.

Бесколлекторные двигатели получили широкое распространение благодаря развитию электроники и, в том числе, благодаря появлению недорогих силовых транзисторных ключей. Также немаловажную роль сыграло появление мощных неодимовых магнитов.

Однако не стоит считать бесколлекторный двигатель новинкой. Идея бесколлекторного двигателя появилась на заре электричества. Но, в силу неготовности технологий, ждала своего времени до 1962 года, когда появился первый коммерческий бесколлекторный двигатель постоянного тока. Т.е. уже более полувека существуют различные серийные реализации этого типа электропривода!

Немного терминологии

Бесколлекторные двигатели постоянного тока называют так же вентильными, в зарубежной литературе BLDCM (BrushLes Direct Current Motor) или PMSM (Permanent Magnet Synchronous Motor).

Конструктивно бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Обращаю Ваше внимание на то, что в коллекторном двигателе наоборот, обмотки находятся на роторе. Поэтому, далее в тексте ротор — магниты, статор — обмотки.

Для управления двигателем применяется электронный регулятор. В зарубежной литературе Speed Controller или ESC (Electronic speed control).

Что такое бесколлекторный двигатель?

Обычно люди, сталкиваясь с чем-то новым, ищут аналогии. Иногда приходится слышать фразы «ну это как синхронник», или еще хуже «он похож на шаговик». Поскольку большинство бесколлекторных двигателей трехфазные, это еще больше путает, что приводит к неправильному мнению о том, что регулятор «кормит» двигатель переменным 3-x фазным током. Все вышесказанное соответствует действительности только отчасти. Дело в том, что синхронными можно назвать все двигатели кроме асинхронных. Все двигатели постоянного тока являются синхронными с самосинхронизацией, но их принцип действия отличается от синхронных двигателей переменного тока, у которых самосинхронизация отсутствует. Как шаговый бесколлекторный двигатель тоже, наверное, сможет работать. Но тут такое дело: кирпич он тоже может летать… правда, недалеко, ибо для этого не предназначен. В качестве шагового двигателя больше подойдет вентильный реактивный двигатель.

Попробуем разобраться, что собой представляет бесколлекторный двигатель постоянного тока (Brushles Direct Current Motor). В самой этой фразе уже кроется ответ — это двигатель постоянного тока без коллектора. Функции коллектора выполняет электроника.

Преимущества и недостатки

Из конструкции двигателя удаляется довольно сложный, требующий обслуживания тяжелый и искрящий узел — коллектор. Конструкция двигателя существенно упрощается. Двигатель получается легче и компактнее. Значительно уменьшаются потери на коммутацию, поскольку контакты коллектора и щетки заменяются электронными ключами. В итоге получаем электродвигатель с наилучшими показателями КПД и показателем мощности на килограмм собственного веса, с наиболее широким диапазоном изменения скорости вращения. На практике бесколлекторные двигатели греются меньше, чем их коллекторные братья. Переносят большую нагрузку по моменту. Применение мощных неодимовых магнитов сделали бесколлекторные двигатели еще более компактными. Конструкция бесколекторного двигателя позволяет эксплуатировать его в воде и агресивных средах (разумеется, только двигатель, регулятор мочить будет очень дорого). Бесколлекторные двигатели практически не создают радиопомех.

Единственным недостатком считают сложный дорогостоящий электронный блок управления (регулятор или ESC). Однако, если вы хотите управлять оборотами двигателя, без электроники никак не обойтись. Если вам не надо управлять оборотами бесколлекторного двигателя, без электронного блока управления все равно не обойтись. Бесколлекторный двигатель без электроники — просто железка. Нет возможности подать на него напряжение и добиться нормального вращения как у других двигателей.

Что происходит в регуляторе бесколлекторного двигателя?

Для того чтобы понять, что происходит в электронике регулятора, управляющего бесколлекторным двигателем, вернемся немного назад и сначала разберемся как работает коллекторный двигатель. Из школьного курса физики помним, как магнитное поле действует на рамку с током. Рамка с током вращается в магнитном поле. При этом она не вращается постоянно, а поворачивается до определенного положения. Для того чтобы происходило непрерывное вращение, нужно переключать направление тока в рамке в зависимости от положения рамки. В нашем случае рамка с током — это обмотка двигателя, а переключением занимается коллектор — устройство со щетками и контактами. Устройство простейшего двигателя смотри на рисунке.

То же самое делает и электроника, управляющая бесколлекторным двигателем — в нужные моменты подключает постоянное напряжение на нужные обмотки статора.

Датчики положения, двигатели без датчиков

Из вышесказанного важно уяснить, что подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора. Поэтому электроника должна уметь определять положение ротора двигателя. Для этого применяются датчики положения. Они могут быть различного типа, оптические, магнитные и т.д. В настоящее время очень распространены дискретные датчики на основе эффекта Холла (например SS41). В трехфазном бесколлекторном двигателе используется 3 датчика. Благодаря таким датчикам электронный блок управления всегда знает, в каком положении находится ротор и на какие обмотки подавать напряжение в каждый момент времени. Позже будет рассмотрен алгоритм управления трехфазным бесколлекторным двигателем.

Существуют бесколлекторные двигатели, которые не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Эти методы также будут рассмотрены позднее. Следует обратить внимание на существенный момент: этот способ актуален только при вращении двигателя. Когда двигатель не вращается или вращается очень медленно, такой метод не работает.

В каких случаях применяют бесколлекорные двигатели с датчиками, а в каких — без датчиков? В чем их отличие?

Двигатели с датчиками положения более предпочтительны с технической точки зрения. Алгоритм управления такими двигателями значительно проще. Однако есть и свои минусы: требуется обеспечить питание датчиков и прокладку проводов от датчиков в двигателе к управляющей электронике; в случае выхода со строя одного из датчиков, двигатель прекращает работу, а замена датчиков, как правило, требует разборки двигателя.

В тех случаях, когда конструктивно невозможно разместить датчики в корпусе двигателя, используют двигатели без датчиков. Конструктивно такие двигатели практически не отличаются от двигателей с датчиками. А вот электронный блок должен уметь управлять двигателем без датчиков. При этом блок управления должен соответствовать характеристикам конкретной модели двигателя.

Если двигатель должен стартовать с существенной нагрузкой на валу двигателя (электротранспорт, подъёмные механизмы и т.п.) — применяют двигатели с датчиками. Если двигатель стартует без нагрузки на валу (вентиляция, воздушный винт, применяется центробежная муфта сцепления и т.п.), можно применять двигатели без датчиков. Запомните: двигатель без датчиков положения должен стартовать без нагрузки на валу. Если это

Коммутирующий энкодер

| Quantum Devices, Inc.

Бесщеточные двигатели и щеточные двигатели: в чем разница?

27 августа 2014 г.

В чем разница между бесщеточным двигателем с коммутирующим энкодером и щеточным двигателем?

Ну щетки конечно. А без щеток — необходимость в коммутирующем энкодере для токоведущей.

Ага, но что означает и ?

Принцип внутренней работы как бесщеточного двигателя постоянного тока, так и щеточного двигателя постоянного тока по существу одинаков.Когда обмотки двигателя находятся под напряжением, создается временное магнитное поле, которое отталкивается и / или притягивается к постоянным магнитам. Эта сила преобразуется во вращение вала, что позволяет двигателю выполнять работу. По мере вращения вала электрический ток направляется к разным наборам обмоток, поддерживая электродвижущее отталкивание / притяжение, заставляя ротор постоянно вращаться.

Строительные различия

Щетки внутри электродвигателей используются для подачи тока на обмотки электродвигателя через контакты коммутатора.Бесщеточные двигатели не имеют этих токоведущих коммутаторов. Поле внутри бесщеточного двигателя переключается через усилитель, запускаемый коммутирующим энкодером, таким как оптический энкодер.

Обмотки находятся на роторе (вращающаяся часть двигателя) для щеточных двигателей и на статоре (неподвижная часть двигателя) для бесщеточных двигателей.

Brush Motor: Windings on rotor, magnets on stator

Щеточный двигатель: обмотки на роторе, магниты на статоре

За счет размещения обмоток на внешней неподвижной части электродвигателя необходимость в щетках может быть устранена.

Brushless Motor: Windings on stator, magnets on rotor

Бесщеточный двигатель: обмотки на статоре, магниты на роторе

Есть намеки на щеточные двигатели, впервые разработанные Майклом Фарадеем в 1830-х годах.

Щеточный двигатель Преимущества:

Упрощенная проводка: двигатели щеток могут быть подключены напрямую к источнику постоянного тока, а управление может быть простым, как выключатель

Низкая стоимость

Brushed Motor Недостатки:

Менее эффективный

Электрически зашумлены: переключающее действие коммутаторов, постоянно создающее и размыкающее индуктивные цепи, создает большое количество электрических и электромагнитных помех.

Срок службы: поскольку они постоянно находятся в физическом контакте с валом, щетки и коммутаторы изнашиваются

showing brushes and commutators in a brush motor

Показаны щетки и коммутаторы

showing motor brushes with rotor removed in a brush motor

Показаны моторные щетки со снятым ротором

showing motor brushes with rotor removed in a brush motor

Бесщеточный двигатель с коммутирующим энкодером Преимущества:

Длительный срок службы: щетки не изнашиваются
Низкие затраты на обслуживание: замена щеток не требуется
Высокая эффективность

Бесщеточный двигатель с коммутирующим энкодером Недостатки:

Высокая начальная стоимость: необходимость в коммутационном устройстве, таком как энкодер и привод или контроллер

showing motor brushes with rotor removed in a brush motor

Статор бесщеточного двигателя

showing motor brushes with rotor removed in a brush motor

Ротор бесщеточного двигателя

Эффективность бесщеточного двигателя и щеточного двигателя:

Бесщеточные двигатели обычно имеют КПД 85–90%, тогда как электродвигатели постоянного тока с щетками имеют КПД примерно 75–80%.

Эта разница в эффективности означает, что большая часть общей мощности, используемой двигателем, преобразуется во вращательное усилие и меньше теряется в виде тепла.

Джим — инженер по приложениям в компании Quantum Devices Inc., ведущем производителе инкрементальных энкодеров.

Если вы производитель бесщеточных двигателей, которому требуется коммутирующий энкодер, свяжитесь с Quantum Devices сегодня для получения индивидуального предложения.

Конструктивные отличия:

,

Выбор между щеточными и бесщеточными двигателями постоянного тока

Было время, когда двигатели BLDC были зарезервированы для приложений управления движением. Сегодняшние более экономичные и удобные в использовании двигатели BLDC получили гораздо большее распространение в промышленности и даже в некоторых потребительских приложениях. Allied Motion делит наши двигатели BLDC на три класса: двигатели BLDC общего назначения, бесщеточные серводвигатели и бесщеточные моментные двигатели.

Двигатели BLDC общего назначения
Двигатели

BLDC общего назначения предназначены в первую очередь для коммерческих и промышленных применений общего назначения, особенно для тех, которые не требуют жесткого контроля скорости или положения двигателя, например для вентиляторов, нагнетателей или компрессоров.Обычно это двигатели трапециевидной формы, которые управляются шестиступенчатыми приводами. Они часто работают без обратной связи с обратной связью, используя управление BEMF для приложений начального уровня и бессенсорное векторное управление для более сложных случаев использования.

Двигатели BLDC общего назначения имеют преимущество перед конкурирующими технологиями с точки зрения минимального обслуживания и компактных форм-факторов. Их высокая эффективность делает их идеальными для портативных устройств с батарейным питанием, которым требуется оптимальное время автономной работы. Электродвигатель BLDC общего назначения с датчиком BEMF может быть хорошим решением для таких применений, как кровати для транспортировки пациентов, лодочные подъемники, рабочие инструменты и оборудование для мытья полов.Для более требовательных случаев использования, таких как центрифуги и оборудование для каротажа скважин, бессенсорное векторное управление обеспечивает производительность, сопоставимую с показателями на эффекте Холла, без уязвимости и энергопотребления бортовой электроники.

В последние годы двигатели BLDC также использовались для приведения в действие гидравлических насосов в подъемных устройствах, таких как подъемники, сборщики вишни, погрузчики, транзитные автобусы и грузовики класса 8. Эти двигатели более эффективны, экологичны и являются лучшей альтернативой прежней практике, когда гидравлическая система приводится в действие от двигателя внутреннего сгорания транспортного средства.

Бесщеточные серводвигатели

Бесщеточные серводвигатели — это подмножество двигателей BLDC, предназначенных для приложений, требующих точного позиционирования и / или высоких скоростей. Как упоминалось выше, это обычно синусоидальные двигатели BLDC с питанием от контроллеров с синусоидальной коммутацией. Используя обратную связь с обратной связью, эти двигатели обеспечивают быстрый и точный отклик в высокодинамичных приложениях, для которых быстрое и точное отслеживание траекторий и позиционирование являются ключевыми критериями.

Приложения

Sweet Spot включают робототехнику, оборудование для захвата и размещения, производство полупроводников, испытательное и упаковочное оборудование, оси станков и аналогичные приложения, в которых преимущества сервоуправления движением необходимы для достижения требуемой производительности.

Бесщеточные моментные двигатели

Для некоторых приложений требуется очень высокая плотность крутящего момента, высокий крутящий момент на очень низких скоростях или и то, и другое. Для систем такого типа очень хорошим решением являются бесщеточные моментные двигатели.Можно получить точное низкоскоростное позиционирование со стандартными двигателями BLDC, добавив редуктор, но они создают проблемы с потерями передачи мощности, механической податливостью и / или потерянным ходом / люфтом.

Мотор-редукторы

также увеличивают сложность и необходимость технического обслуживания, а также увеличивают количество точек отказа. Бесщеточный моментный двигатель — лучшее решение.

Специализированная подгруппа серводвигателей, моментные двигатели имеют большее количество полюсов и больший диаметр, чем другие двигатели BLDC. Эта комбинация позволяет им обеспечивать более высокую плотность крутящего момента и более высокий крутящий момент на низкой скорости.Моментные двигатели обычно встроены непосредственно в механизм, которым они должны приводить, вместо того, чтобы соединяться через промежуточные механизмы, такие как шариковые винтовые пары или редукторы. Кроме того, конструкции, как правило, имеют форму блинов (большой диаметр, короткая осевая длина) с относительно большим сквозным отверстием в центре, которое обеспечивает варианты конструкции для пропускания оптических лучей, кабелей или водопровода через двигатель. Приложения включают роботизированные суставы, имитаторы полета, многокоординатные подвесы слежения и позиционирования, автоматизированное управление транспортным средством на основе GPS и широкоформатные кинопроекторы, и это лишь некоторые из них.

Engineering основана на поиске наилучшего решения для приложения. Наличие щеточных и бесщеточных конструкций позволяет технологиям двигателей постоянного тока удовлетворять широкий спектр потребностей. Для недорогих промышленных приложений, в которых цена является наиболее важной, а производительность — второстепенной, щеточные двигатели постоянного тока могут очень хорошо служить этой цели. Разработчики оборудования с более высокими требованиями найдут лучшие варианты в категории двигателей BLDC, включая двигатели BLDC общего назначения, серводвигатели BLDC и моментные двигатели BLDC.Благодаря целому ряду преимуществ, включая более высокую эффективность, меньшее загрязнение и электромагнитные помехи, меньшие затраты на техническое обслуживание, компактные размеры, меньший вес и улучшенное рассеивание тепла, двигатели BLDC находят все большее применение в самых разных отраслях и сферах применения.

,

двигателей и выбор подходящего

Введение

В любой момент вы находитесь рядом как минимум с одним или двумя типами двигателей. От вибромотора в вашем мобильном телефоне до вентиляторов и CD-привода в вашей любимой игровой системе — двигатели повсюду вокруг нас. Двигатели позволяют нашим устройствам взаимодействовать с нами и окружающей средой. С множеством приложений для двигателей, их конструкция и работа могут варьироваться.

Что вы узнаете

В этом руководстве мы рассмотрим некоторые из этих основных типов двигателей и их использования:

  • Щеточные двигатели постоянного тока
  • Бесщеточные двигатели
  • Шаговые двигатели
  • Линейные двигатели

Рекомендуемая литература

Что заставляет мотор двигаться?

Самый расплывчатый и простой ответ — магнетизм! Хорошо, теперь давайте возьмем эту простую силу и превратим ее в суперкар!

Чтобы не усложнять задачу, нам нужно будет взглянуть на некоторые концепции через призму мысленного эксперимента.Некоторые вольности будут приняты, но если вы хотите разобраться в деталях, вы можете проконсультироваться с доктором Гриффитсом. Для нашего мысленного эксперимента мы собираемся заявить, что магнитное поле создается движущимся электроном , то есть током . Хотя это создает для нас классическую модель, все ломается, когда мы достигаем атомарного уровня. Чтобы лучше понять атомный уровень магнетизма, Гриффитс объясняет это в другой книге …

Электромагнетизм

Чтобы создать магнит или магнитное поле, нам нужно посмотреть, как они создаются.Отношения между током и магнитным полем подчиняются правилу правой руки. Когда ток проходит через провод, вокруг него образуется магнитное поле в направлении ваших пальцев, когда они его охватывают. Это упрощение закона силы Ампера, поскольку он действует на провод с током. Теперь, если вы поместите тот же провод в уже существующее магнитное поле, вы можете создать силу. Эта сила называется силой Лоренца.

Правило правой руки показывает направление магнитного поля относительно пути тока.

При увеличении силы тока усиливается магнитное поле. Хотя, чтобы сделать что-то полезное с полем, потребуется невероятное количество тока. Кроме того, провод, по которому подается ток, будет иметь такую ​​же магнитную силу, что создаст неконтролируемые поля. Сгибая проволоку в петлю, можно создать направленное и концентрированное поле.

Поле не изменилось. Сгибая провод в петлю, направления поля просто выравниваются.

Электромагниты

Закручивая провод и пропуская ток, создается электромагнит. Если одна петля может сконцентрировать поле, что вы можете сделать с другими? Как насчет еще нескольких сотен ! Чем больше петель вы добавите в схему, тем сильнее станет поле для заданного тока. Если это так, то почему мы не видим тысяч **, если не ** миллионов обмоток в двигателях и электромагнитах? Что ж, чем длиннее провод, тем выше сопротивление.Закон Ома (V = I * R) гласит, что для поддержания того же тока при увеличении сопротивления напряжение должно увеличиваться. В некоторых случаях имеет смысл использовать более высокие напряжения; в других случаях некоторые используют более крупный провод с меньшим сопротивлением. Использование проволоки большего диаметра дороже и, как правило, с ней труднее работать. Это факторы, которые необходимо учитывать при разработке двигателя.

Электромагнит под напряжением, создающий магнитное поле.

Время эксперимента

Чтобы создать свой собственный электромагнит, просто найдите болт (или другой круглый стальной предмет), какой-нибудь магнитный провод (калибр 30-22 подойдет) и батарею.

Примечание: литиевые батареи НЕ рекомендуются для этого эксперимента.

Оберните вокруг стали 75-100 витков проволоки. Использование стального центра дополнительно концентрирует магнитное поле, увеличивая его эффективную силу. Мы рассмотрим, почему это происходит, в следующем разделе.

Немного термоусадки или ленты могут помочь удерживать катушки на стальном центре.

Теперь, используя наждачную бумагу, удалите изоляцию с концов проводов и подключите каждый провод к каждой клемме батареи.Поздравляем! Вы построили первый компонент двигателя! Чтобы проверить силу вашего электромагнита, попробуйте взять скрепки или другие небольшие стальные предметы.

Это не волшебство, это НАУКА !!!

Ферромагнетизм

Если вернуться к началу нашего мысленного эксперимента, магнитные поля могут создаваться только током. Принимая определение тока как поток электронов, электроны, вращающиеся вокруг атома, должны создавать ток и, следовательно, магнитное поле! Если в каждом атоме есть электроны, все ли магнитно? ДА! Любая материя, включая лягушек, может проявлять магнитные свойства, если ей дать достаточно энергии.Но не весь магнетизм создается одинаково. Причина, по которой я могу подбирать винты с магнентом рефридератора, а не с лягушкой, заключается в разнице между ферромагнетизмом и парамагнетизмом. Способ различить эти два (и еще несколько типов) заключается в изучении квантовой механики.

Ферромагнетизм будет в центре нашего внимания, поскольку это сильнейшее явление, с которым мы имеем наибольший опыт. Кроме того, чтобы избавить нас от необходимости понимать это на квантовом уровне, мы собираемся признать, что атомы ферромагнитных материалов стремятся, , выровнять свои магнитные поля со своими соседями.Хотя они имеют тенденцию выравниваться, несоответствия в материалах и других факторах, таких как кристаллическая структура, создают магнитные домены.

Когда магнитные домены выровнены в случайном порядке, соседние поля компенсируют друг друга, что приводит к образованию немагнитного материала. В присутствии сильного внешнего поля эти домены можно перестроить. Выравнивая эти домены, общее поле усиливается, создавая магнит!

Это повторное выравнивание может быть постоянным, в зависимости от силы поля.Это здорово, потому что они нам понадобятся в следующем разделе.

Постоянные магниты

Постоянные магниты ведут себя так же, как электромагниты. Единственная разница в том, что они постоянные.

На всех чертежах стрелки указывают от северного полюса к южному полюсу. Другое соглашение — использовать красный цвет для обозначения севера и синий для обозначения юга. Чтобы определить полярность магнитов, вы можете использовать компас. Поскольку противоположности притягиваются, стрелка будет указывать на север к южному полюсу магнита.

Вы можете провести тот же эксперимент с электромагнитом, чтобы определить полярность.

Если вы измените направление тока на противоположное, вы увидите, как электромагнит может менять местами свои полюса.

Это ключевой принцип при создании двигателей! Теперь давайте посмотрим на несколько разных двигателей и то, как они используют магниты и электромагниты.

Щеточные двигатели постоянного тока — The Classic

Щеточный двигатель постоянного тока — один из самых простых в использовании на сегодняшний день.Вы можете найти эти моторы где угодно. Они есть в бытовой технике, игрушках и автомобилях. Эти двигатели просты в сборке и управлении, поэтому они идеально подходят как для профессионалов, так и для любителей.

Анатомия щеточного двигателя

Чтобы лучше понять принцип работы, давайте начнем с демонтажа простого мотора для хобби. Как видите, они просты по конструкции и состоят из нескольких ключевых компонентов.

  • Щетки — подает питание от контактов на якорь через коммутатор
  • Контакты — передает питание от контроллера к щеткам
  • Коммутатор — подает питание на соответствующий набор обмоток при вращении якоря.
  • Обмотки — Преобразует электричество в магнитное поле, приводящее в движение ось
  • Ось — передает механическую мощность двигателя в приложение пользователя
  • Магниты — создают магнитное поле для притяжения и отталкивания обмоток
  • Втулка — минимизирует трение оси
  • Банка — обеспечивает механический кожух для двигателя

Теория работы

Когда обмотки находятся под напряжением, они притягиваются к магнитам, расположенным вокруг двигателя.При этом двигатель вращается до тех пор, пока щетки не соприкоснутся с новым набором контактов коммутатора. Этот новый контакт возбуждает новый набор обмоток и снова запускает процесс. Чтобы изменить направление вращения двигателя, просто поменяйте полярность на контактах двигателя. Искры внутри щеточного двигателя возникают из-за прыжка щетки к следующему контакту. Каждый провод катушки подключается к двум ближайшим контактам коммутатора.

Всегда используется нечетное количество обмоток для предотвращения блокировки двигателя в установившемся состоянии.В более крупных двигателях также используется больше наборов обмоток, чтобы исключить «зубчатые зазоры», что обеспечивает плавное управление при низких оборотах в минуту (RPM). Зубчатость можно продемонстрировать, вращая ось двигателя вручную. Вы почувствуете «неровности» при движении там, где магниты находятся ближе всего к обнаженному статору. Зубчатость можно устранить с помощью нескольких конструктивных приемов, но наиболее распространенным является удаление статора целиком. Эти типы двигателей называются двигателями без сердечника или железа.

Плюсы

  • Простота управления
  • Превосходный крутящий момент при низких оборотах
  • Недорогой и серийный

Минусы

  • Щетки со временем изнашиваются
  • Дуга щеткой может создавать электромагнитный шум
  • Обычно скорость ограничена из-за нагрева щеток

Бесщеточные двигатели — БОЛЬШЕ МОЩНОСТИ!

Бесщеточные двигатели вступают во владение! Хорошо, может, это было преувеличением.Тем не менее, бесщеточные двигатели начали доминировать на рынке хобби между самолетами и наземными транспортными средствами. Управление этими двигателями было препятствием до тех пор, пока микроконтроллеры не стали дешевыми и достаточно мощными, чтобы справиться с этой задачей. Все еще ведется работа по разработке более быстрых и эффективных контроллеров, чтобы раскрыть их удивительный потенциал. Эти двигатели обеспечивают большую мощность без выхода из строя щеток и работают бесшумно. Большинство высокопроизводительных приборов и транспортных средств переходят на бесщеточные системы. Один из ярких примеров — Tesla Model S.

Анатомия бесщеточного двигателя

Чтобы лучше понять принцип работы, давайте начнем с демонтажа простого бесщеточного двигателя. Их обычно можно найти на самолетах и ​​вертолетах с дистанционным управлением.

  • Обмотки — Преобразует электричество в магнитное поле, которое приводит в движение ротор
  • Контакты
  • — подает питание от контроллера на обмотки
  • Подшипники — минимизируют трение оси
  • Магниты — создают магнитное поле для притяжения и отталкивания обмоток
  • Ось — передает механическую мощность двигателя в приложение пользователя

Теория работы

Механика бесщеточного двигателя невероятно проста.Единственная движущаяся часть — это ротор, в котором установлены магниты. Все усложняется — это организация последовательности включения обмоток. Полярность каждой обмотки регулируется направлением тока. Анимация демонстрирует простой шаблон, которому будут следовать контроллеры. Переменный ток изменяет полярность, давая каждой обмотке эффект «тяни / толкай». Хитрость заключается в том, чтобы синхронизировать этот рисунок со скоростью ротора. Это можно сделать двумя (широко используемыми) способами.Большинство контроллеров для хобби измеряют создаваемое напряжение (обратные электромагнитные помехи) на обмотке без напряжения. Этот метод очень надежен при работе на высоких скоростях. По мере того как двигатель вращается медленнее, возникающее напряжение становится труднее измерить, и возникает больше ошибок. Более новые контроллеры для хобби и многие промышленные контроллеры используют датчики на эффекте Холла для прямого измерения положения магнитов. Это основной метод управления вентиляторами компьютера.

Плюсы

  • Надежный
  • Высокая скорость
  • Эффективный
  • Серийное производство, легко найти

Минусы

  • Сложно управлять без специализированного контроллера
  • Требуются низкие пусковые нагрузки
  • Обычно требуются специальные редукторы для приводов

Шаговые двигатели — Simply Precise

Шаговые двигатели — отличные двигатели для управления положением.Их можно найти в настольных принтерах, плоттерах, 3D-принтерах, фрезерных станках с ЧПУ и во всем остальном, где требуется точное управление положением. Шаговые двигатели — особый сегмент бесщеточных двигателей. Они специально созданы для высокого удерживающего момента. Этот высокий удерживающий момент дает пользователю возможность постепенно «шагать» к следующему положению. Это приводит к простой системе позиционирования, не требующей кодировщика. Это делает контроллеры шаговых двигателей очень простыми в сборке и использовании.

Анатомия шагового двигателя

Чтобы лучше понять, как он работает, давайте начнем с демонтажа простого шагового двигателя.Как видите, эти двигатели созданы для нагрузок с прямым приводом и содержат несколько ключевых компонентов.

  • Ось — передает механическую мощность двигателя в приложение пользователя
  • Подшипники — минимизируют трение оси
  • Магниты — создают магнитное поле для притяжения и отталкивания обмоток
  • Poles — Увеличивает разрешение шагового расстояния за счет фокусировки магнитного поля
  • Обмотки — Преобразует электричество в магнитное поле, приводящее в движение ось
  • Контакты
  • — подает питание от контроллера на обмотки

Теория работы

Шаговые двигатели ведут себя точно так же, как бесщеточные двигатели, только размер шага намного меньше.Единственная движущаяся часть — это ротор, в котором установлены магниты. Все усложняется — это организация последовательности включения обмоток. Полярность каждой обмотки регулируется направлением тока. Анимация демонстрирует простой шаблон, которому будут следовать контроллеры. Переменный ток изменяет полярность, давая каждой обмотке эффект «тяни / толкай». Заметная разница заключается в том, чем отличается магнитная структура шагового двигателя. Трудно заставить массив магнитов вести себя хорошо в малых масштабах.К тому же это очень дорого. Чтобы обойти это, в большинстве шаговых двигателей используется метод сложенных пластин, чтобы направить магнитные полюса в «зубцы».

В бесщеточном двигателе обратная ЭДС используется для измерения скорости. Шаговый двигатель полагается на короткий ход каждой обмотки, чтобы «гарантировать» достижение желаемого момента времени. При высокоскоростном движении это может привести к остановке, когда ротор не успевает за порядком. Есть способы обойти это, но они основаны на более глубоком понимании взаимосвязи между обмотками двигателя и индуктивностью.

Плюсы

  • Превосходная точность позиционирования
  • Высокий удерживающий момент
  • Высокая надежность
  • Большинство шаговых двигателей имеют стандартные размеры

Минусы

  • Расстояние маленького шага ограничивает максимальную скорость
  • Можно «пропустить» ступеньки при высоких нагрузках
  • Постоянно потребляет максимальный ток

Линейные двигатели — будущее !!!

Будущее линейно! В высокоскоростных подъемно-транспортных средствах скорость решает все.Скорость приходит с трением, с трением — с обслуживанием, с обслуживанием — простои, с простоями — потеря производительности. За счет удаления компонентов, необходимых для преобразования вращательного движения в поступательное, система становится намного легче и эффективнее. Линейные двигатели просты в обслуживании и, имея только одну движущуюся часть, невероятно надежны. Я уже говорил, что они невероятно быстрые ?! Это машина для захвата и размещения, которую мы используем в производстве, и она невероятно быстра! Этот аппарат тоже обладает таким ударом, на нем есть предупреждение для кардиостимуляторов.Есть целый ряд мощных редкоземельных магнитов.

Анатомия линейного двигателя

Чтобы лучше понять, как он работает, давайте заглянем внутрь нашего подборщика и разместим машину внизу.

    Модуль движения
  • — содержит электромагниты и контроллер.
  • Магниты — создают магнитное поле для притяжения и отталкивания катушек
  • Линейный подшипник — удерживает двигатель в соответствии с магнитами и является единственной подвижной частью.

Теория работы

Механика линейного двигателя почти идентична бесщеточному двигателю.Единственная разница в том, что если взять бесщеточный двигатель и развернуть его по прямой, у вас будет линейный двигатель. Модуль движения — единственная движущаяся часть. Все усложняется в организации последовательности возбуждающих катушек. Полярность каждой катушки контролируется направлением тока. Анимация демонстрирует простой шаблон, которому будут следовать контроллеры. Переменный ток меняет полярность, давая каждой катушке эффект «тяни / толкай». В линейном двигателе обычно используется энкодер или какая-либо усовершенствованная система позиционирования для отслеживания местоположения модуля движения.Для достижения высокой точности позиционирования контроллеры намного сложнее, чем все, что можно найти в обычной системе. Микрошаг — это метод «дросселирования» магнитов для обеспечения плавного и точного движения. Однако для этого линейным двигателям требуется узкоспециализированный контроллер, настроенный для каждого двигателя. По мере совершенствования технологии контроллеров мы, вероятно, увидим снижение цены на эти двигатели. Возможно, когда-нибудь наши 3D-принтеры будут печатать за секунды, а не часы!

Плюсы

  • Надежный
  • Высокая скорость
  • Эффективный
  • Не требуется преобразование из вращательного в линейное

Минусы

  • Дорого
  • Требуются настраиваемые контроллеры
  • Назначение для каждой системы
  • Я упоминал дорого?

Ресурсы и дальнейшее развитие

Итак, мы рассмотрели несколько различных типов двигателей и способы их использования.Выбор двигателя потребует от вас сначала определения требований приложения. С этими требованиями вы можете посмотреть на сильные и слабые стороны каждого типа двигателя. Но что еще более важно, обратите внимание на характеристики каждого двигателя. У каждого двигателя будут значения входной и выходной мощности. Вы можете рассчитать требования к нагрузке системы, но иногда достаточно просто попробовать! Чтобы начать интеграцию двигателей, загляните на некоторые из этих страниц:

И, наконец, это отличное место, чтобы узнать все, что касается физики.

,

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.